MATH2050C Solution to Quiz 1

Justify your answer.

1. (10 marks)
(a) Use definition to show

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}+5 n+2}{2 n^{2}-7}=\frac{3}{2}
$$

Solution We have

$$
\begin{aligned}
\left|\frac{3 n^{2}+5 n+2}{2 n^{2}-7}-\frac{3}{2}\right| & =\frac{10 n+25}{2\left(2 n^{2}-7\right)} \\
& =\frac{10 n+25}{2\left(n^{2}+n^{2}-7\right)} \\
& \leq \frac{10 n+25}{2 n^{2}} \quad(\text { for } n \geq 3) \\
& \leq \frac{10 n+10 n}{2 n^{2}} \\
& \leq \frac{10}{n}
\end{aligned}
$$

For $\varepsilon>0$, choose $n_{0}=\max \{3,[10 / \varepsilon]+1\}$. Then for all $n \geq n_{0},\left|\frac{3 n^{2}+5 n+2}{2 n^{2}-7}-\frac{3}{2}\right|<\varepsilon$.
(b) Use Limit Theorem to show the same limit.

Solution Since $3+5 / n+2 / n^{2} \rightarrow 3$ and $2-7 / n^{2} \rightarrow 2$, by the Quotient Rule in the Limit Theorem, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 n^{2}+5 n+2}{2 n^{2}-7} & =\lim _{n \rightarrow \infty} \frac{3+5 / n+2 / n^{2}}{2-7 / n^{2}} \\
& =\frac{\lim _{n \rightarrow \infty}\left(3+5 / n+2 / n^{2}\right)}{\lim _{n \rightarrow \infty}\left(2-7 / n^{2}\right)} \\
& =\frac{3}{2}
\end{aligned}
$$

2. (10 marks)
(a) Show that $\lim _{n \rightarrow \infty} a^{1 / n}=1$ where $a>1$.

Solution Write $a^{1 / n}=1+b_{n}, b_{n}>0$. By Bernouli's inequality, $a=\left(1+b_{n}\right)^{n} \geq$ $1+n b_{n}$ which implies $a-1 \geq n b_{n}$ or $0 \leq b_{n} \leq(a-1) / n$. By Squeeze Theorem, $0 \leq \lim _{n \rightarrow \infty} b_{n} \leq \lim _{n \rightarrow \infty}(a-1) / n=0$. Hence $b_{n} \rightarrow 0$ and $a^{1 / n}=1+b_{n} \rightarrow 1$.
(b) Find the limit when $0<a<1$.

Solution Write $a=1 / c, c>1$. By (a) and the Quotient Rule in the Limit Theorem,

$$
\lim _{n \rightarrow \infty} a^{1 / n}=\lim _{n \rightarrow \infty} \frac{1}{c^{1 / n}}=\frac{1}{\lim _{n \rightarrow \infty} c^{1 / n}}=\frac{1}{1}=1
$$

